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Equilibrium dynamics of a paramagnetic cluster
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The transverse autocorrelation function at an arbitrary temperature is calculated rigorously for a system with
an arbitrary number of quantum spins, each of which is coupled to all the other spins with equal exchange. It
is shown that the cluster approximation, formed by a model for a real magnet, explains short- and intermediate-
time (up to the time to reach the spin-diffusion regime) experimental measurements in the paramagnetic phase.

For more than forty years of theoretical research on the
equilibrium dynamics of quantum Heisenberg magnets at
high temperatures, the behavior at intermediate times (that is
of the order of the inverse value of exchange between a spin
and its surrounding) has received no reasonable explanation.
The Bloembergen suggestion® to describe an equilibration of
a higher excited spin system as some random-walk process
was followed by several attempts concentrating mainly on
investigation of the longest-time behavior, in the so-called
spin-diffusion regime. The synthetic adoption approach,®~®
in which a suitable function (from the point of view of the
expected long-time behavior) is used to fit certain moments
known from the direct short-time expansion, could not de-
scribe experimental measurements on an intermediate time
scale.” 12 A comparison of the mode-coupling theories!>~16
with experiment also shows the same remarkable discrep-
ancy (see experimental work'! for review). All these theoreti-
cal approaches show a monotonic time decay or a negative
value of the transverse pair-spin autocorrelator, but the ex-
perimental curve is positive and has a minimum at some
intermediate time.!! The most representative paper of the
mode-coupling approach15 is used the clear physical idea that
each spin moves in a randomly varying effective magnetic
field produced by its neighbors. This idea is very natural on
the largest time scale, but must be reexamined on an inter-
mediate time scale, when it seems more suitable to use a
cluster mean field with a nonrandom but self-consistent ef-
fective magnetic field created by the surrounding spins.

To test this hypothesis we can restrict ourselves to the
following cluster model. Let a system of N 3 spins be de-
scribed by the uniform-range Heisenberg Hamiltonian,
where N is the number of spins in the exchange sphere of an
original magnet:

F#=— (JI2N) (6)?, (1)

where JN/(N —1) is an exchange strength between the spin
and its surrounding and = Ej-v § is the total spin operator of
the system. Suppose the system is in thermal equilibrium
with an inverse temperature 8. An investigation of the static
expectation values of the system is (in the limit N>1) the
subject of mean-field theory for magnets with a long-range
exchange.!”'® A question arises: is it possible to create a
dynamical mean-field approach for those magnets? Or, re-
turning to the system of N uniformly coupled spins, what is
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the equilibrium dynamics? The uniform feature of the ex-
change makes the spatial correlations homogeneous, which
allows one to express any spin correlator in terms of auto-
correlation functions. The study of the dynamic properties of
such a model as its anisotropic generalization (the so-called
van der Waals model) was pioneered by Dekeyser and
Lee.'®?! In Refs. 20 and 21 they answered the ““‘thermody-
namic” (N—) part of the question posed above: it was
shown, first, that in the limit N— o, the dynamics of a single
spin and the total remaining spin are coupled to each other
linearly;? that allowed them subsequently to determine the
spin autocorrelation function analytically.”! However, this di-
rect scheme, which builds on a straightforward resolution of
the single-spin dynamics at N =0, fails to describe the clus-
ter (finite-N) situation.

In this paper, we use a functional integral formalism with
the model described by the Hamiltonian (1) to obtain an
exact expression for the temporal dependence of the
transverse-pair autocorrelator at arbitrary temperature and
number of spins. We show that the cluster approximation,
formed by the model for a real magnet (N plays the role of
the number of spins in the exchange sphere) explains the
short- and intermediate-time experimental measurements in
the paramagnetic phase.

Our starting point is the transverse pair autocorrelator in
the following well-defined form:

1 Te{[§7(0)5 (1) +5+(0)5 (1) ]e A7

F(t,B)= = 3 2
t.8)= 3 o @)

where §*(¢) is the usual notation for up- and down-spin
operators in the Heisenberg representation §*(f)=
et FsTe I H  §T=5*+is¥. The Hamiltonian (1) commu-
tates with the full spin of the system &. It means that we can
classify the eigenstates of the Hamiltonian by the value of
the spin angular momentum L, that can take the positive
values L=N/2, N/2—1, ..., and its projection on the z
axes M, that can take the values M=—L,—L+1,...,L.
The energy level E; = —JL(L +1)/2N corresponding to the
value of full spin L thus has (2L + 1)-fold degeneracy. This
|L,M) representation of the eigenstates would be very con-
venient for a calculation of a diagonal matrix element (or a
trace) defined in terms of the full spin operator only. Except
for a calculation of a diagonal matrix element of a one-spin
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operator that does not commutate with the Hamiltonian, as in
(2), this representation is not suitable.

To avoid the effect of the mixing of the [L,M) eigenstates
by the one-spin operators §*, we will formulate a technique
that maps the initial &-phase space into some unbounded
functional one. The resulting one-particle quantum mechan-
ics turns out to be exactly solvable. Here we present a sketch
of the method, postponing details to a more detailed publi-
cation. Let us also note, to avoid misunderstanding, that the
method we use has nothing to do with the Bethe-ansatz or
inverse-scattering approaches.

We begin from the infinite-temperature case in which the
correlator (2) is reduced to

%O(t;N)=Tr[e‘i"’%’/§+ei"%§_]. 3)

In order to calculate the N-spins trace we perform Hubbard-
Stratonovich transformations of the evolution operators from
the definition (3)

s . IN [t
e*”%«f @@exp( —Tfodf'#’i‘)n AV, @)

. iN [t
e””‘ﬁf @¢2eXP(—7f0dt’¢§)H A, (5)
j

t
AL (1)= Texp( ifodt'gal,z(t')éj), (6)

factoring the initial trace to a product of local ones (here and
further we measure ¢ in the units of J ~1). Due to an absence
of any time dependence in the Hamiltonian (1) we had no
time-ordered exponentials in (3). Still, after the Hubbard-
Stratonovich transformation, 7 exponents appeared [in
J%f’z)( t)]. This stems from the noncommutativity of the full
spin of the system ¢ with an arbitrary one-site operator §;,
and reflects the multiplicativity (in discretized time) of the
functional measures in (4) and (5). At first glance, those
time-ordered exponentials produce real difficulties. Indeed,
we cannot calculate them explicitly as functionals of ¢; ;.
However, a substitution does exist which recasts the time-
ordered exponentials (6) into the products of the usual expo-
nentials (see Refs. 22 and 23) by means of the following
change of variables ¢— (p,#™) in the functional integrals
(4) and (5):

@ L= P12 24 o ,,
=i+ — () Yr

2 =u, @ =iy —pay — ()%, (D
where ¢* = (¢@**i¢”)/2. Equation (7) deals with the diffi-
culty, mentioned above, that it is impossible to express T
exponentials in terms of the usual functions of initial vari-
ables ¢; in general, p and ¢* cannot be expressed solely in
terms of ¢ from (7). But to perform changes of variables
¢—(p, ™) in the functional integrals (4) and (5) it is not
necessary to invert (7). Explicit expressions for .2?(¢) and
the Jacobian of (7) in terms of the new variables p and ™
may be found by analogy with what has been explained in

=Y. e =
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detail in Refs. 22 and 23. After a calculation of the N local
tracers, we arrive at the following functional representation
for Z°(¢;N):

0= const f D1, D e BV E,

sy 2= p2—aiii Yy +4iyd gy 1dt
0= | LPiTr2 iy Yy t4iy, ¢,

it
+ _2_,[ (p1—p2)dt,
0
B=Ti[ AV 4]

1 (t
=2 cos[—f (p1+pp)dt’
2Jo

¢
+e<f/2>fa<m—»z>df’( vi+i w;eifspzdr')
0
. t _ .t ’
X\ ¢y +if0¢1 e~ ioprdt ,

F=Ti[ AV 2 D5~ = DIo(p1=p2)at’ 8)

Normalization of the functional integral (8) depends on N
only, and it can be fixed by an evident condition
Z°(t=0)=1. The transversal fields ;, have no dynamics
at all. Indeed, the functional integral in (8) remains the same
if the fields 45 (¢'), ¢;(¢') at an arbitrary moment
0<t'<t are replaced by 5 (¢), ¥ () correspondingly. But
the dynamics of the p fields keeps it very nontrivial. How-
ever, it turns out that the functional integral (8) over the p
fields is of the Feynman-Kac type®* and we can calculate it
explicitly. The problem is transformed to a calculation of
some matrix element of the accompanying one-dimensional
quantum mechanics with the Hamiltonian

Hre=— (1/2N) 33+ (N/2) &, ©)
Let us note that a similar matrix element with respect to
exactly the same quantum mechanics appears in the calcula-
tion of the multipoint densities correlator in 1d
localization.”® The wave function (and all the matrix ele-
ments correspondingly) is calculated explicitly. In total we
therefore obtain the following answer for the equilibrium
transverse pair correlator at infinite temperature:

N N-2
(%O(t;N)=§{%+(cos—t—) —l[(cosz—t—) —1}

2N N N
; ; \N-2
—(N——l)sinz—z—ﬁ(cosﬁ) ] (10)

FHO(t;N) is periodic in time; starting from unit a zero time it
relaxes to a minimum, then restores up to a plateau (3 at
N—), and becomes again unit at z,,,=47N. The direct

calculations of Tr[e “#§*e*7§7] at small N confirm the
result (10).

In the limit of large N, when ., is not reached, an inter-
mediate asymptotic takes place. Thus, at (= Txfﬁ, 71,
N>1 we have a smooth relaxation depending on N via 7
only
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FIG. 1. The full curve is the Fourier transform of the measured data for
the spectral densities of the transversal autocorrelation function at relatively
high temperature in Rb,CuBr,*H,0. J; is the value of the nearest-neighbor
exchange in the magnet. The dashed line is the cluster result (10) with an
appropriate choice of parameters J and N.

)~ H1+2e " B—(22)e 5. (11)

The result (11) is characterized by a Gaussian bump and a
nonvanishing tail at 7—o (in strong agreement with Ref.
21). Let us note that the Gaussian bump, which as we will
see below takes place also at lower temperatures, has also
been obtained by Belinicher and L’vov for the Green func-
tion of dispersion-free magnons in long-range quantum
magnets.?® The asymptotic value of K°(7) at VN<t<N (1 at
N—x) stems from eigenstates of the initial quantum me-
chanics (1) with the zero full spin o=0. The nonvanishing
tail is just an artifact of the nonergodicity of our model.
Thus, in the case of a more realistic long-range model the
plateau can be realized in the thermodynamic limit only as
an intermediate-time asymptotic.

The present results give approximations for a real quan-
tum magnet. The thermodynamic (N=o°) result (11) forms
the zeroth order with respect to the small parameter 1/N
cluster approximation (N plays the role of the number of
spins in the exchange sphere; let us note that in 3d even in
the case of the nearest-neighbor interaction 1/N is a reason-
able enough small parameter). However, (10) can give us
more if we consider N as the number of spins in the ex-
change sphere of a real magnet. The experimental
observations!! support this statement. The experimental
curve for the transversal autocorrelator in Rb,CuBr,*H,0
(which is three-dimensional bcc, s=3) repeats with very
good agreement the dependence (11) in the interval of times
from zero up to the moment of time when .%°(¢;N) reaches
its minimal value [see Fig. 1 for comparison of some experi-
mental measurements and (11) with an appropriate choice of
constants J and N]. Later in time the dependence (11) devi-
ates from the experimental curve, which restores the value
approximately on 0.05 units to cross over further into a spin-
diffusion tail at the largest times.

The behavior (11) looks similar to the calculations®’ for
spin in a classical random field. However, in our case there
was no external randomness at all. And the constant of
Gaussian relaxation, which had been external in Ref. 27, is
defined in our consideration by means of the dynamics itself.

In a recent paper”® we investigated the long-time dynam-
ics of an arbitrary-exchange quantum Heisenberg model at
infinite temperature. It was shown that the quantum spin pair
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correlator (in the para-phase due to unbroken symmetry of
the Hamiltonian it is just the transverse correlator multiplied
by 3) is equal to the correlator of a classically evaluated
vector field ¢y (?)

de=2 Tl beX &1, (12)
j

averaged over the initial conditions ¢;(0)=p; with respect
to the Gaussian measure

1
1;[ deeXP[ —m; Piz]~ (13)

This “classical” problem, remaining strongly nonlinear at an
arbitrary exchange J;;, becomes linear and exactly solvable
for the uniform exchange J;;=J/N. Indeed, in the uniform
case the right-hand side of (12) is J[ ¢ XP]/N, where
P=Z2,p=2;¢ is the integral of motion. The classical mo-
tion of a spin turns out to be just the uniform precession
around the total spin of the system. It is remarkable that the
§ universal (at N—o only) tail has in these terms a very
simple explanation: cos?’#=} stems from the longitudinal
(parallel to the full spin of the system) single-spin projection.
It yields at N>1, t=7\N and spin s=3 exactly the same
answer (11) for the transverse autocorrelator. Let us note that
the above-mentioned physical picture of the linear single-
spin dynamics was described by Dekeyser and Lee.?” Thus,
we obtained first, a good physical picture resulting in (11),
and second, that the transition to the classical model is valid
not only at a large enough time,?® but also for a long enough
exchange rate.

Armed with this understanding of the infinite temperature
case we can go forward to a finite temperature. It is possible
to show that the approach resulting in (10) is generalized on
finite temperatures. Indeed, the substitution in the first expo-
nential in the right-hand side of (3) ¢;=¢—if instead of ¢
produces %" (¢,8), the real part of which gives .%(¢,)
(2). Thus, omitting the details of the calculation we write
here the result

1 +00 /2
wt = dt’ ht'YNe—2t'*NIB
(t,B) \/EZ(,B)J—OO t'(cosht’)Ne

2Ne”(4t’2N , ) ( B

x 4,8 ——-B —t'—1|—4exp 3N
2it" (z—iﬁ)2)( N 4¢'2N?

+7(t—t,3)+w 1+-E— B2

+(4it’N+t;;’,8)(t—i,B)”’ 14

where Z(3) is the partition function being defined from this
expression with the condition Re[. %" (0,8)]=1.

In the intermediate asymptotic t= 7N, 7~1, N>1 the
saddle-point approximation of (14) gives a generalization of
(10) to the (finite-temperature paramagnetic case
(4—BN>1

H(t,B)~ L{1+2[1- 24— B)le”"TRPEBY (15)
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when the only solution of the saddle-point equation

tanht* =4¢*/3, (16)

is t* =0 [in the low-temperature case two nonzero solutions
of (16) appear, and one of them has to be chosen as the
saddle point in the corresponding N> 1 calculations]. In this
case B<4, Z(B)x(4—B) *2. Thus, we conclude that at
B=4 there is a peculiarity of usual phase transition type (of
course a phase transition exists only in the limit of a large
number of spins N>1). It is clear that the static critical
exponent  is just the mean field (by construction) one but its
evaluation is useful for a control of the really complicated
dynamical calculations. We see that the squared inverse time
of Gaussian relaxation (15) goes linearly to o with
4 — B—0. The results (14) and (15) are shown graphically in
Fig. 2.

To conclude, for the N-spin uniform exchange quantum
model we have rigorously calculated the temporal depen-
dence of the transverse pair autocorrelator at an arbitrary
number of spins and temperatures. In the para-phase the cor-
relator shows Gaussian relaxation from 1 at r+=0 via a mini-
mum to a (universal =} at 1~ \/[N—) plateau (see Fig. 2).

The results are obtained by a method that is nothing more
than a quantum cluster dynamical mean-field one and that by
the construction turns out to be exact.

From the point of view of possible applications to long-
range quantum magnets those exact results are also unique in
generating a starting dynamical approximation for the para-
phase. The possibility of having an exact result for a general
N is very important. Indeed, the full answer (14) gives an
approximation to the problem with a large but finite radius of
exchange in an infinite magnet, when N plays the role of a
number of spins in the exchange sphere. The physical picture
accompanied by this approximation is clear from the classi-
cal model (12) and (13): the dynamics of a spin is defined by
its uniform precession around the full spin of the system. A
comparison of the approximation, which gives for the equi-
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FIG. 2. Transverse pair autocorrelator as a function of 7. The six col-
lected plots correspond to different value of inverse temperature 8 and
number of spins N in the cluster: the full line: 8= 1, asymptotic N—oo; the
long-dashed line: 8= 1, N=100; the dashed line: 8=1, N=10; the dashed-
dotted line: B=0, asymptotic N—; the dotted line: B=3.5, asymptotic
N— oo,

librium autocorrelation function in the paramagnetic phase
the Gaussian relaxation from 1 at t=0 via the minimum at
t=t,, (for B=0, ~0.07 at ¢,,~3.5 \/]V/J) to a plateau, with
the corresponding experimental curve'! gives a coincidence
at short and intermediate (up to ¢,,) times; the experimental
results show that the cluster approximation fails immediately
after ¢,,, when a spin-diffusion regime begins to shape. We
expect the universality of the minimum in temporal behavior
of the autocorrelation in a more realistic (Heisenberg) model
with a finite exchange range. To prove it precise analytical
calculations as experimental measurements describing cross-
over between the cluster and spin-diffusion regimes are re-
quired.
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